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Abstract
Memory leak is a notorious issue. Despite the extensive ef-
forts, addressing memory leaks in large production cloud
systems remains challenging. Existing solutions incur high
overhead and/or suffer from high inaccuracies.

This paper presents RESIN, a solution designed to holisti-
cally address memory leaks in production cloud infrastruc-
ture. RESIN takes a divide-and-conquer approach to tackle
the challenges. It performs a low-overhead detection first
with a robust bucketization-based pivot scheme to identify
suspicious leaking entities. It then takes live heap snapshots
at appropriate time points in carefully sampled leak entities.
RESIN analyzes the collected snapshots for leak diagnosis.
Finally, RESIN automatically mitigates detected leaks.

RESIN has been running in production in Microsoft Azure
for 3 years. It reports on average 24 leak tickets each month
with high accuracy and low overhead, and provides effective
diagnosis reports. Its results translate into a 41× reduction of
VM reboots caused by low memory.

1 Introduction
Memory leak is a prevalent issue in software, from applica-
tions [13] to OS kernels and device drivers [46]. At Microsoft
Azure, its infrastructure contains many complex software com-
ponents running on a massive number of machines with vari-
ous workloads. Unsurprisingly, these components encounter
memory leak issues from time to time. When a process leaks
memory, the direct consequence is performance degradation
and crash. Worse still, its impact often affects other compo-
nents running on the same machine, such as causing excessive
paging, innocent processes being killed, and node reboots.

Memory leak is notoriously difficult to deal with, especially
in a production cloud infrastructure setting. The issues are
usually only triggered by rare conditions and occur slowly,
thus they easily escape testing and failure detectors [20]. Af-
ter leak symptoms are detected, it is time-consuming and
sometimes impossible to reproduce them offline. Unlike other
failures like crashes that have clear points to start diagnosis,
developers are often clueless in finding the leak’s root cause.

Extensive solutions have been proposed to detect memory
leak bugs. One approach uses static analysis techniques [10,
15,18,36,47] to analyze the software source code and deduce
potential leaks. The second approach detects memory leaks
dynamically by instrumenting a program and tracking the
object references at runtime [16, 21, 25, 39, 49].

While helpful, these solutions are insufficient to address the
memory leak challenges in Azure. Static approach is limited
by the well-known accuracy and scalability issues with static
analyses. It also only focuses on leaks in which allocated
objects are unreachable [24]. If memory objects are reach-
able but never accessed again, it still incurs the consequences
of leaks. Such leaks are hard to detect statically. Moreover,
memory leaks in cloud infrastructure can be caused by cross-
component contract violations, which require too much do-
main knowledge to recognize statically.

Dynamic approaches better fit Azure’s requirements. How-
ever, while the existing dynamic detection solutions are gen-
erally more accurate, they are intrusive and require extensive
instrumentations that are cumbersome to apply to complex
components [16, 21]. They also incur high runtime overhead
that is prohibitive for deployment in production [6].

In this paper, we present RESIN, an end-to-end service
designed to holistically address memory leaks in large cloud
infrastructure, from detection to diagnosis and mitigation.
RESIN is highly scalable—it analyzes all the host software
components, including kernels, drivers, and system processes,
on millions of nodes in Azure. RESIN has low overhead while
running in production environment. At the same time, RESIN
provides good accuracy and helps developers pinpoint the
root causes of memory leak issues.

Two key insights motivate the design of RESIN and enable
it to achieve the above properties. First, the conundrum of
existing solutions is in part because they mix detecting a leak
and pinpointing the leak bug in one step, so they have to make
trade-offs among accuracy, scalability, and overhead. In our
experience, we should decompose the detection and pinpoint-
ing into multi-level stages to catch memory leaks at produc-
tion scale. Second, taking a centralized service approach that
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leverages low-level system mechanism is essential to support
many components transparently in a non-intrusive way. It also
enables gathering valuable information from many nodes in
the cloud to address the accuracy challenges.

Based on these insights, RESIN performs non-intrusive,
low-overhead leak detection first. When a process is suspected
of experiencing leaks, RESIN triggers a live heap-snapshot
mechanism to capture sufficient evidence and runs diagnosis.
RESIN leverages kernel-level monitors and profilers as its
building blocks, so it directly supports all the running pro-
cesses without cumbersome integration. Furthermore, RESIN
builds a centralized service that analyzes processes across all
hosts in Azure fleet together to capture complex leaks.

A key challenge for dynamic leak detection is the highly
noisy nature of memory usage in modern software affected
by the workload characteristics. Using simple static thresh-
olds can easily generate many false alarms or false negatives.
For instance, in an impactful real-world cloud service outage
caused by memory leaks, no alarm was triggered despite the
existence of a memory monitoring service [4].

RESIN addresses this challenge by designing a robust
bucketization-based pivot scheme. It aggregates the mem-
ory usages of processes across machines, and groups them
into different buckets. Then by performing a pivot analysis
on the process name, bucket, and other attributes, RESIN can
reliably detect leaks without being prone to fragile thresh-
olds. Essentially, we focus on analyzing a component’s global
memory usage behavior, rather than the microscope of an indi-
vidual process. The rationale is that a true memory leak comes
down to some buggy release. Although the memory usage
of an individual process is highly dependent on workloads,
the workload effect is likely canceled out when inspecting the
usage of the same component running in all machines.

Once a suspicious memory leak is detected, RESIN acti-
vates the second stage of taking live heap snapshots of the
suspected processes, which contain information about the
active allocations and their stack traces. This stage is more
heavyweight but provides more evidence to help developers
confirm and diagnose the issue. Since a leak is often sporadic,
RESIN aims to “hit” the leak again and capture useful evi-
dence. It carefully chooses the snapshot time points so that
the obtained snapshots have a high chance of localizing the
root causes while minimizing the snapshot cost. Besides tak-
ing heap snapshots of the suspected leaking process, RESIN
performs a fingerprinting step that periodically takes heap
snapshots of representative processes to build a reference
database. This reference database is used in the diagnosis
algorithm to further improve the diagnosis accuracy.

Finally, RESIN automatically mitigates a detected leak to
minimize its impact on the service availability and perfor-
mance. The mitigation engine in RESIN leverages the infor-
mation from the detection and diagnosis engines, and deter-
mines the appropriate actions to resolve the leak symptoms
while developers investigate the root causes and fixes.

RESIN has been running in production in Azure for more
than 3 years. RESIN reported many memory leaks, helped
developers diagnose the issues, and automatically mitigated
the leaks before their impact becomes visible to customers.
Within the recent year at the timing of writing, the unexpected
VM reboots in Azure caused by out of memory are reduced
by 41×, and the new VM allocation errors due to low memory
are reduced by 10×. In addition, no severe outages in 2020
and 2021 at Azure were caused by memory leaks.

In summary, the main contributions of this work are:
• A holistic memory leak solution for cloud infrastructure.
• A novel bucketization-based pivot scheme to robustly detect

memory leaks with low overhead.
• A live heap snapshot algorithm to effectively capture evi-

dence in production and diagnose memory leaks.
• A lightweight automated leak mitigation design.
• Deployment of RESIN in a production cloud service.

2 Background and Motivation
2.1 Host Memory Compositions
In IaaS cloud infrastructure, servers are equipped with large
memory, a significant portion of which is used by the virtual
machines (VMs), while the other portion is used by the host
software. The latter includes the hypervisor, host OS kernel,
drivers, system processes, and various host agents, e.g., an
agent that manages networking of the VMs. In this work, we
focus on memory leak issues in host software, not leaks in
customer VMs. Unless otherwise specified, the kernel, drivers
and processes hereafter refer to those in host software stack.

Leaks in the host software can cause severe performance
degradation and even instability of the host OS. They can fur-
ther impact the running VMs, because memory between VMs
and the host is not strictly partitioned, typically controlled by a
soft threshold [45]. They can also cause potential VM start-up
failures due to insufficient physical memory available.

The host memory is divided into user-mode memory and
kernel memory. The host OS in Azure’s infrastructure distin-
guishes four states for pages in a process’ virtual memory:
free, reserved (for future use but no physical page is allo-
cated), committed (memory has been allocated from physical
memory or paging files), and shared. For memory leak de-
tection, we only need to consider pages in the committed
and shared states. For kernel memory, the kernel creates two
types of memory pools: non-paged pools and paged pools.
Virtual memory in the non-paged pool is guaranteed to reside
in physical memory as long as the kernel objects are alive,
whereas memory in paged pool can be paged out. Memory
leaks in the kernel can happen in both types of pools.

2.2 Memory Leaks
Memory leak occurs when heap-allocated objects are not
freed at appropriate time. It is manifested in two forms: (i)
unreachable leak, in which an allocated object is no longer
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// ConfigMonitorThread

while (cm->running) {
  waitStatus = WaitForSingleObject(
                      fileChangeHandle, 5 * 1000);
  if (waitStatus == WAIT_OBJECT_0) {
    // object is signaled, config file has changed

    ::Sleep(200);
    cm->ReadConfig(); // read the file
+   if (!FindNextChangeNotification(fileChangeHandle))  
+     throw ServerBaseException(
+         "Failed to get handle to config directory");
  }
- FindNextChangeNotification(fileChangeHandle);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

5-sec timeout, previously 

it was set to INFINITE

Figure 1: A production memory leak example in Azure from a host
process that caused leaks of objects allocated at the kernel side.

reachable from the root objects such as global and stack vari-
ables; (ii) forgotten leak, in which an allocated object is still
reachable but no longer accessed. The first type does not occur
in managed languages like Java. For the second type, since the
program still keeps references to the leaked object, it cannot
be reclaimed even with managed languages [12]. Such leak is
challenging to be detected because whether an object will be
accessed in the remaining execution is undecidable. Thus, a
leak detection solution can only output conservative (correct)
answers, e.g., the objects that are definitely dead at a given
time point, or approximate answers (which may be incorrect)
such as inferring based on the object’s staleness [17].

Memory leaks in cloud software have further complications.
For instance, while existing solutions focus on detecting leaks
in an individual component, a memory leak in cloud infras-
tructure often happens because of API contract violations be-
tween different components, which is not well addressed. This
type of leak is hard to expose in pre-production environment,
because software components are often tested separately and
integration testing cannot cover all possible interactions. Slow
leaks also unlikely get detected due to testing time constraints.

Figure 1 shows a real example of such a leak in Azure
(this case was successfully caught by RESIN). The process
has a thread that monitors the configuration file updates us-
ing WaitForSingleObject with a 5-second timeout. In each
loop iteration, it calls the FindNextChangeNotification API
(line 13). Each invocation causes the kernel to allocate I/O
request kernel objects from the non-paged pool memory. The
contract of the FindNextChangeNotification is that it must
be followed by a call to a wait function, and if the wait func-
tion returns for any reason other than the change notification
handle being signaled (e.g., timeout), the wait must be retried.
In this case, although the process calls the wait function, it un-
conditionally calls FindNextChangeNotification even if the
wait returns timeout. Thus, the kernel objects are allocated
every 5 seconds without being cleaned up. In this incident,
the culprit process’ memory usage was not high. The kernel
was experiencing memory leak in its non-paged pool, not
because of kernel bugs but rather the improper API usage in
the process’ code. This memory leak was introduced during
a bug fix for another issue: previously the process waits for
the updates using an INFINITE parameter in line 4, but this

caused service restart operations to be blocked, so developers
changed the wait parameter to a timeout of 5 seconds.

2.3 Requirements
There are several challenges and requirements for addressing
memory leaks in cloud infrastructure software:
• Highly scalable. Cloud system is large in the number of

components, codebase size, and deployment scale.
• Versatile. Memory leaks in cloud infrastructure manifest

themselves in various ways—in processes, kernel, unreach-
able leaks, forgotten leaks, cross-component leaks, etc.

• Non-intrusive and low-overhead. Solutions that require in-
trusive modifications or incur high runtime overhead are
hard to be deployed in production.

• Accurate. True leaks should be detected. False positives
should be minimized, because they would cause developers
to waste significant time investigating false issues.

• Timely. If the leak detection is too slow, significant damage
to customers may already occur.

• End-To-End. Only alerting memory leaks is insufficient.
Developers also need considerable help in confirming the
issue, pinpointing the root cause, and mitigating the leak.

Additional constraints include generality and efforts of inte-
grating a solution. The software components in cloud infras-
tructure are written in different programming paradigms, and
may depend on proprietary libraries. The millions of nodes in
Azure also have heterogeneity with different OSes, libraries,
and hardware versions. Supporting all of these varieties is
challenging. For example, we made an experimental effort of
integrating the LeakSanitizer [1], a popular run-time memory
leak detector from the LLVM project, into one Azure host
component’s codebase. The integration effort was difficult
(took one person month) due to complex compilation flags,
and library compatibility issues. The MSVC compiler’s full
support for LeakSanitizer is still pending [3].

3 Overview of RESIN

Despite the extensive efforts to address memory leaks in con-
ventional settings, they are insufficient to satisfy the unique
requirements for tackling memory leaks in large cloud infras-
tructure (Section 2.3). To address this gap, we propose RESIN.
RESIN is a holistic system running in the Azure production
infrastructure to detect memory leaks in host software and
provide diagnosis support to developers easily pinpointing
the leak’s root causes. RESIN further performs automatic leak
mitigation to reduce the impact of detected leaks.

Approach A large cloud infrastructure can have hundreds
of components owned by different teams. Prior to RESIN,
tackling memory leaks in Azure is a team-by-team effort.
Some teams started investigating after incident reports about
slow or failing VMs, and developers discovered leak bugs in
their components during manual investigation. Some teams
added telemetry monitors in their testing cluster and used
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Figure 2: Workflow of the RESIN system.

hard-coded thresholds to trigger leak alerts in testing. Simi-
larly, diagnosing leaks in Azure used to rely on developers
to manually inspect the leaking nodes and run profiling tools.
These individual practices were tedious and costed repeated
engineering efforts. They also incurred significant false posi-
tives and could not handle cross-component leak issues.

RESIN takes a centralized approach instead. It does not
require access to a component’s source code, nor extensive
instrumentation or re-compilation. RESIN uses a monitoring
agent to each host that leverages low-level OS features to
collect memory telemetry data. It automatically supports all
components including the kernel. The data analysis is of-
floaded to a remote service, which minimizes the overhead
to the hosts. By aggregating data from different hosts, RESIN
can run more sophisticated analyses to catch complex leaks.

In addition, RESIN decomposes and tackles the memory
leak problem in multi-level stages. It performs lightweight
leak detection first and triggers more in-depth inspections on
the fly when necessary for confirmation and diagnosis. This
divide-and-conquer approach allows RESIN to achieve low
overhead, high accuracy, and scalability together.

Workflow Figure 2 shows the workflow of RESIN. It starts
with low-overhead monitoring (¶) at each host. A remote
service analyzes (·) the collected data across different hosts
using a bucketization-pivot scheme. If a bucket is suspected of
leaking, RESIN triggers an analysis on the process instances
from that bucket. After the two steps identify a highly sus-
picious software component, RESIN automatically generates
an alert ticket for that component along with a list of leaking
process instances belonging to that component. Meanwhile,
RESIN performs live heap snapshotting (¸) for the suspected
processes. RESIN carefully chooses the snapshotting time us-
ing a growth pattern based algorithm to ensure the collected
snapshots would be helpful. RESIN also samples normal pro-
cesses to take regular heap snapshots and build a reference
database. After generating multiple heap snapshots, RESIN
tries to pinpoint the root causes (¹) by running a diagnosis al-
gorithm on the snapshots. The analysis report will be attached
to the alert ticket thread to assist developers. Finally, RESIN
automatically mitigates the leaking processes.

4 Design of Leak Detection
In this section, we describe the RESIN’s design for detect-
ing memory leaks. In existing literature, the term “detection”
refers to detect both (i) if a program or a process has a leak,
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Figure 3: Monitor agent in each node collecting memory usage data.

and (ii) the bug in code or leaked objects. RESIN separates
these as two tasks and uses the term detection to refer to (i)
specifically. The diagnosis component (Section 5) targets (ii).

4.1 Challenges
RESIN needs to address several challenges. First, cloud in-
frastructure software has highly noisy memory usage due
to changing workloads and interference in the environment.
Using static thresholds would generate many false positives.
Standard anomaly detection algorithms [40, 41] do not work
well either, because it is common for a component to ex-
hibit memory usage spikes that are not leaks but legitimate
increases in handling certain workloads.

Second, memory leaks in production systems are usually
fail-slow faults [14] that last days, weeks, to even months
(rapid leaks are likely caught in testing or deployment). In-
specting memory usage in a short time window would miss
these slow leaks. It is necessary but challenging to capture
gradual changes over a long period and still raise timely alerts.

Third, given the scale of Azure, collecting fine-grained data
for a long time is impractical because of storage and overhead
concerns. Therefore, RESIN can only collect limited, coarse-
grained data and must work well under this constraint. Still,
even with coarse-grained signals, the data volume is enormous.
The detection algorithms must run efficiently.

4.2 Lightweight Memory Usage Monitoring
RESIN deploys a privileged monitoring agent on each host
(Figure 3). This agent communicates with the host OS to track
memory usage. It collects both kernel memory usage and per-
process memory usage. The kernel usage is obtained from
a pool monitor kernel module (PoolMon), and includes the
usages of non-paged memory pool and paged memory pool
for each tag. The tag is passed as an argument by the callers
of the kernel allocation API [32] and represents a sub-system
that has requested memory from the kernel allocator, e.g., the
file system, a driver. The per-process usage is obtained by
querying the per-process performance counters from the host.
It includes breakdowns of a process’s memory, such as the
private commit, working set size, paging file usage, etc.

We collect the memory usage breakdowns and tags instead
of simply a single total memory usage metric, because mixing
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different memory usage sources can introduce noises and miss
important changes. For example, a 20 MB increase can be a
leak for a driver but may be negligible for another component.
Reporting the specific memory portion or tag that is leaking
helps developers localize the buggy code. The breakdowns
also help RESIN take more effective mitigation actions.

In addition to memory usages, the monitoring agent also
records attributes such as the software version, hardware gen-
erations, node id, and cluster id. The attributes are used during
leak detection analyses to increase accuracy. RESIN includes
the common attributes of the leaked process in the detection
report to give developers troubleshooting hints.

The monitoring agent is scheduled to run every 5 minutes.
However, the data points from different hosts may not be
perfectly synchronized. Some special events in a host such as
node reboots also introduce missing or invalid data. Therefore,
RESIN aggregates the time-series data into hourly granularity
by removing extreme outliers and computing the mean of the
remaining data points. This pre-processing step reduces the
noises as well as the data volume. Using an hourly window is
not too coarse-grained because most software components in
cloud infrastructure are long running, and production leaks
typically occur in a large time scale.

4.3 Detection Algorithms
RESIN uses a two-level scheme to detect memory leak symp-
toms: a global bucketing-based pivot analysis to identify sus-
picious components, and a local individual process leak de-
tection to identify leaking processes. The detection output
includes the suspected component, the list of top leaking pro-
cesses of that component, the leak start and end times, severity
scores, etc. The detection algorithms are language agnostic.

4.3.1 Bucketization-based Pivot Analysis
To address the challenges described in Section 4.1, our insight
is that we should inspect at the component granularity across
processes. This is because although an individual process’
memory usage is influenced by workloads and highly noisy,
the noises can be “canceled out” en masse. For a normal
component, its process instances on different hosts may ex-
perience different workload effect at any time slice. But for a
leaky component, the memory leak must be caused by some
buggy release. Therefore, its processes should exhibit some
global trend at certain time slices despite the workload effect.

Based on this insight, we design a simple yet robust
bucketization-based pivot detection scheme (Figure 4). RESIN
first groups the raw memory usage telemetry data into a num-
ber of buckets. In our implementation, we use 20 buckets
(50 MB, 100 MB, 200 MB, . . . , 40 GB, 50 GB). RESIN then
applies pivoting to the data with a unique attribute tuple as
the index and memory usage bucket as columns. The attribute
tuple is (ProcessImageName, ServiceName) for user-level soft-
ware, and (TagName, PoolType) for kernel subsystems, where
Type is paged memory or non-paged memory. The aggregation
function is the count of distinct nodes. Thus, each summary
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Figure 4: Group the memory usage into buckets and pivot by image
name, service, and bucket size. Each circle represents one process.
Shaded circle represents a process moving to another bucket.

cell represents the number of nodes that have running pro-
cesses with a particular attribute tuple and these processes’
memory usages fall into the specific bucket. RESIN computes
the summary periodically and incrementally for data in each
time interval. The results are saved into a database table.

We basically transform the memory usage data into sum-
mary about numbers of nodes in different buckets, which can
more robustly represent the trends and tolerate noises due to
workload effect (e.g., the non-leaky component in Figure 4).
RESIN then runs anomaly detection on the time-series data
of each bucket for each component. It uses the most recent
time period of summary data (default 15 days), with the first
2/3 portion as the baseline and the remaining data points as
the test. If a bucket’s test period has data points that exceed
the µ+3σ of the baseline data (µ and σ represent the mean
and standard deviation of the distribution), it is considered to
be an anomaly. The start time and end time in the test period
when the node count becomes the outlier are recorded.

One caveat is that if many processes of a component expe-
rience a sudden drop in memory usage, the node count would
shift from a higher bucket to a lower bucket. But the lower
bucket’s node count significant increase is not an anomaly. To
handle such scenarios, RESIN calculates cumulative bucket
values during the anomaly detection. In other words, if the
100 MB bucket has a node count of n, it means there are n
nodes that have the particular processes with memory usage
equal to or larger than 100 MB, including processes (if any)
that fall into the 200 MB bucket. In this way, a significant
increase in a bucket almost always suggests an anomaly.

The bucketization approach also helps address the com-
putation challenges. Before introducing this approach, it can
take RESIN more than one day to run anomaly detection on
the enormous data points from millions of nodes. After the
pivot summary, RESIN only needs to run anomaly detection
for the time-series data in each bucket, which can finish in
less than one hour for all data (even without parallelization).

RESIN calculates a severity score for each bucket based on
the deviations and node count in the bucket. It considers a
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component is leaking based on a <size_mb,score> threshold:
if a bucket is of size equal to or larger than size_mb and its
severity score exceeds score. RESIN generates intermediate
reports for the abnormal buckets. It de-duplicates the interme-
diate reports by only keeping the one for the largest bucket of
a unique attribute tuple, and generates a ticket for that report.

4.3.2 Localizing Individual Processes
The bucketization pivot analysis works at the component
granularity. RESIN uses a second-level detection scheme that
works at the process1 granularity. The motivation for this
scheme is that a component has many process instances. It is
important to localize the truly leaking processes in the alerting
bucket. If we simply include all the processes in the abnormal
bucket, developers can waste significant effort investigating
innocent processes that fall into that bucket by coincidence.

The second-level detection scheme computes the leak like-
lihood and severity for a process based on its memory usage.
RESIN uses all the memory usage data of a component in
the most recent month to train two parametric models: (i)
the absolute usage model and (ii) the usage difference model.
Since different clusters and regions can exhibit drastically dif-
ferent characteristics, the tool builds separate models for each
combination of region name and cluster type for a component.

Let Uc(ni, t j) denote the memory usage value for a process
of component c on node ni at time t j. RESIN assumes absolute
usage Uc(ni, t j) follows a Gaussian distribution N (µ1,σ

2
1)

and fits the memory usage data by calculating the maximum
likelihood estimators for µ1 and σ1. The absolute memory
usage values can be severely distorted by occasional events
such as VM creations. To account for such events, we consider
the differential memory usage, i.e., ∆Uc(ni, t j) =Uc(ni, t j)−
Uc(ni, t j−1). Based on our observations, when noisy events
such as VM creations occur, ∆Uc(ni, t j) usually significantly
deviates from its normal range. Thus, RESIN also builds a
parametric Gaussian distribution N (µ2,σ

2
2) model for usage

difference ∆Uc(ni, t j) and calculates the µ2 and σ2.
With the offline models, RESIN uses a moving suspicious

interval algorithm (Algorithm 1) to examine a suspected pro-
cess’ memory usage in real time. This algorithm works by
keeping a suspicious leak time interval [T0,T1]. The basic
idea is to assume the leak still continues at the end of the time
series and try to find the earliest time the leak trend starts
by skipping over low-confidence points. This interval is ini-
tialized as [t1, t1] upon reading the first data point in a time
series. At the j-th step, RESIN reads Uc(ni, t j), calculates the
∆Uc(ni, t j), and adjusts the time interval by moving T1 and up-
date T0 adaptively. If ∆Uc(ni, t j) has a significant increase or
drop (based on the 3-sigma rule for µ2 and σ2), T0 is updated
to t j because the system status is likely changed by some
event. If Uc(ni, t j) is lower than Uc(ni,T0) or there are few
increasing points in the current interval, T0 is also updated

1Here we use the term “process” to also include a running instance of a
kernel subsystem in a particular host for kernel memory leak detection.

Algorithm 1: Moving suspicious interval algorithm
Input: Uc(ni, t): time-series memory usage for node ni of component

c; N (µ2,σ
2
2): offline usage difference model for component c.

Output: T0, T1: leak start and end time; no leak if T0==T1. Ninc:
number of increasing data points

tn←max(t) in Uc(ni, t), Ninc← 0
T0 ← t1, T1 ← t1
for j← 2 to n do

T1 ← t j
∆Uc(ni, t j)←Uc(ni, t j) - Uc(ni, t j−1)
if IsOutlier(∆Uc,N ) || Uc(ni, t j)<Uc(ni,T0) || Ninc/n < ε then

T0← t j
if T0 == T1 then

Ninc← 0 /* empty interval, no leak, reset */

else if IsLarger(Uc(ni, t j),Uc(ni, t j−1),N ) then
Ninc ← Ninc +1 /* a new increasing data point */

return T0,T1,Ninc

t 

Uc(ni, t) 

T1 

T0 

t1 … 

∆Uc(ni, tj) 

∆T 

t2 t3 t4 … tj tn

Figure 5: Applying the moving suspicious interval algorithm.

to t j because a leaking trend should have enough increasing
values. For other situations, we keep the T0 intact. The loop
stops when T1 hits the last time point tn. If the final T0 is equal
to T1, this process is not considered as leaking.

Figure 5 shows an example of applying the algorithm.
[T0,T1] are initially set to [t1, t1]. When T1 is set to t2,
∆Uc(ni, t j) is positive thus we keep T0 unchanged and con-
tinue to move T1 forward. When T1 is set to t3, ∆Uc(ni, t j) is
an outlier in the offline model (N ,µ2,σ

2
2), which we consider

an occasional event instead of a leak. We reset T0 to t3 ac-
cordingly. When T1 is set to t4, Uc(ni, t j) is significantly lower
than Uc(ni,T0) thus we also reset T0 to t4. After t4 we did
not encounter scenarios to reset T0 (the memory usage drops
slightly later but it is unnecessary to reset for such cases), so
eventually T1 reaches the end tn, and [T0,T1] is [t4, tn].

RESIN calculates a severity score (Equation 1) for a pro-
cess to indicate its leak probability and impact. Several factors
are considered, including the normalized memory usage dif-
ference (∆Uc =Uc(ni, tn)−Uc(ni, t1)), the length of the sus-
picious leak interval (∆T = T1−T0 in the unit of month), the
increasing rate (number of increasing data points over the
number of all data points), and the final memory usage at tn.

SevScore =
∆Uc

σ1
+

Ninc

n
+∆T +

1
1+ e−Uc(ni,tn)/µ1

(1)

For efficiency, the above analyses are run proactively. When
the bucketization-based pivot detection step identifies a leak-
ing bucket, RESIN triggers the individual process analysis for
the processes in the bucket and can usually inspect the results
without waiting. It outputs the suspected leaking processes,
the leak start and end time, and the severity scores.
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Figure 6: Periodic heap snapshot collection.

5 Diagnosis of Detected Leaks

Only detecting a leak is not enough. Without sufficient evi-
dence and diagnosis support, developers are likely stuck in
confirming and diagnosing the issue. RESIN designs a solu-
tion that automatically takes live heap snapshots and analyzes
the snapshots to pinpoint the root cause of a detected leak.

5.1 Background: Heap Snapshot

RESIN provides diagnosis information at stack trace granular-
ity. In our experience, if developers are presented with a stack
trace containing the problematic allocations, they can often
quickly debug the issue. RESIN leverages the Windows heap
manager’s snapshot capability to perform live profiling. The
heap manager exposes APIs such as HeapAlloc, HeapReAlloc,
and HeapFree, which are used by applications and C/C++ run-
time to allocate heap objects. Thus the heap manager has the
ability to collect the heap allocation sizes and stack traces.

RESIN uses the Windows Performance Recorder [2] to
notify the kernel to start tracing heap allocations, typically
for a specific process ID and occasionally for an image name
(which enables tracing for all processes with the image). Then
RESIN instructs the heap manager to take a snapshot at a cer-
tain time. Our current heap snapshotting mainly focuses on
C/C++, which are the primary language choices for host soft-
ware on Azure. Extending to other languages would take extra
effort but are still straightforward, as their runtime typically
already provides the functionality to capture allocation events.

To minimize overhead, the heap manager only stores lim-
ited information in each snapshot. Specifically, it stores (1)
the stack trace and size for each active allocation after the
tracing was enabled (if an allocation has been freed, no infor-
mation is stored), (2) the total allocation sizes for each unique
stack trace, and (3) the number of times a unique stack trace
is invoked. It does not store more detailed information such
as the allocation time or a pointer graph.

The information in a single snapshot is usually too noisy,
as it includes all active allocations from the tracing start to the
snapshot point. To get more accurate information for a time
window, RESIN periodically takes multiple heap snapshots
(Figure 6) to increase the chance of capturing truly leaking
allocations between snapshots. RESIN uploads the snapshot
files to a remote storage service. The diagnosis engine uses
these snapshots to deduce the leaking allocation points.

5.2 Choosing Candidate Hosts to Profile
Picking the right hosts to take heap snapshot is vital for diag-
nosis effectiveness. Because heap snapshot incurs overhead,
RESIN cannot afford to enable snapshot on all hosts contain-
ing the leaking processes the detection engine outputs. Simply
choosing the hosts randomly is not a good strategy either, be-
cause the workloads on different hosts vary widely. For the
same leak bug, it can exhibit in quite different patterns on dif-
ferent hosts. Thus, we may choose a candidate host in which
the buggy allocations are triggered rarely.

We rank the candidate hosts in the suspected list based
on three factors: 1) severity: choose processes with higher
severity scores as described in Section 4.3.2, since more ob-
vious symptoms suggest a better chance to be diagnosed; 2)
noisiness: choose processes with a clearer growth pattern,
which we will discuss in more detail in Section 5.3; 3) impact:
choose hosts that have fewer user activities to minimize im-
pact of profiling events. By default RESIN triggers snapshot
collection for the top three hosts in the list in case the collec-
tion fails unexpectedly (e.g., due to target process restart).

5.3 Deciding Trace Collection Strategy
With the candidate hosts selected, the next step is to decide if
a new leak happens in the most recent snapshot interval and
whether to take the snapshots. This step is different from the
analysis in Section 4.3, which only finds leaking processes in
past time. The decision making has two main challenges.

First, many production leaks are only triggered by specific
events. Some leaks only occur once in several days. If we
take snapshots at other times, the collected traces would not
be helpful. To ensure rare leaks are captured, RESIN attaches
the profiling workflow to the process for a long time and
periodically (every half hour) takes snapshots in hope of cap-
turing the leak. However, we cannot afford to keep uploading
snapshots due to storage and overhead concerns. RESIN ad-
dresses the challenge with a long-term, trigger-based strategy:
it uses a circular buffer that only keeps the most recently taken
snapshots, and completes tracing once certain trigger is met.

Second, how to decide when the trace collection should
complete, i.e., the trigger. At the completion time, we should
ideally (1) have snapshot(s) containing the buggy allocation;
(2) have snapshot(s) for non-leaking scenarios; (3) minimize
noisy allocations in the snapshot(s). One potential trigger is
to complete the collection once the memory usage difference
exceeds some threshold. This trigger can easily complete the
tracing prematurely (fails to capture the buggy allocation) due
to a legitimate memory usage spike, and/or produces snap-
shots that have many noisy allocations and mislead diagnosis.

To gain some insights on how to choose the triggers, we
study the memory usage data of 51 real leak cases. Inter-
estingly, most cases fall into three common patterns (and a
mixture of them). Additionally, one leaking process in a spe-
cific host often has a consistent pattern. In 63% of the cases,
the leaking process shows a steady pattern. One example is
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Figure 7: Memory growth patterns and completion point choices.
Each data point is real memory usage from production processes.

Pattern Characteristics Completion Trigger

Steady Almost linear growth R2
j > λa.

Stair Steady growing and flat curves |1− slope j/slopek|< λb
alternately appears. && R2

j < λc

Spike A few large allocations in a short ∆Uc(ni, t j)/∆Uc(ni, tk)
period of time > λd

Table 1: Leak patterns, characteristics and their completion triggers.

the bug shown in Figure 1, in which the leak exists in period-
ical update tasks. The other two common patterns are stair
(the memory usage occasionally grows only when the proce-
dure containing leaks is activated) and spike (the leak only
occurs once in a while due to rare events). Each pattern has
its unique usage growth characteristics and clear completion
point candidates a , b , c shown in Figure 7. d is not a good
completion point as it is right after a period of some noises.

Guided by the findings, RESIN takes a pattern-based ap-
proach to decide the trace completion triggers. It uses the
target process’ memory usage data in the most recent week
and classifies it into one of the three patterns. Specifically,
RESIN first identifies nearly flat segments in the time-series
data and removes them. It then performs linear regression on
the remaining growing segments and outputs results including
the slope slopek, coefficient of determination R2, and absolute
memory usage increase ∆Uc(ni, tk). If the data contains no
flat segments, RESIN marks it as a steady pattern. If the data
has flat segments in between growing segments, it is marked
as a stair pattern. If a large increase in memory usage only
occurs in a few data points, it is marked as a spike pattern.

After the pattern is classified, the workflow starts to monitor
and analyze the recent memory usage. We compute the slope j,
R2

j , and ∆Uc(ni, t j) for the most recent six hours and check the
pattern’s completion trigger based on rules listed in Table 1 (
λa, λb, λc and λd are set to 0.8, 0.1, 0.1, and 0.5, respectively).
Once the trigger is satisfied, RESIN stops tracing and uploads
the trace file that contains the most recent few snapshots. It
ensures each trace has at least three snapshots.

5.4 Collecting Reference Snapshots
One challenge in using snapshots for diagnosis is the presence
of many noisy but benign allocations. Even with multiple
snapshots, they may remain active and mislead the diagnosis.
RESIN collects reference snapshots to address this challenge.

For the reference snapshots to be useful, they should be
comparable to the snapshots from the leaking process. A
poor choice of a reference snapshot may be even counter-

Algorithm 2: Heap snapshot diagnosis algorithm
Input: An−1,An: sets of allocations in two heap snapshots, Sr: a list

of outstanding stacks from reference hosts, pattern: classified
pattern, estimate_leak: upper bound of estimated leaking size

Output: So: a list of top N stack traces that likely caused leaks
So ← [], Sdi f f ← []
Sn ← An.groupBy(alloc=>alloc.stackid)

Sn−1 ← An−1.groupBy(alloc=>alloc.stackid)

foreach stack ∈ Sn do
if stack ∈ Sn−1 then Adi f f ← Sn[stack.id] \ Sn−1[stack.id]

else Adi f f ← Sn[stack.id]

if Adi f f 6= /0 then
foreach a ∈ Adi f f do stack.size← stack.size+a.size

Sdi f f .add(stack)

Sdi f f .orderBy(stack=>stack.size)

if pattern 6= SPIKE then
Sdi f f .removeAll(stack=> stack.size > estimate_leak)

Sdi f f .removeAll(stack=> stack ∈ Sr) /* filter references */

So ← Sdi f f .top(N) /* only keep top N stack traces */

return So

productive and filter out the culprit allocations. RESIN uses a
periodical fingerprinting process to build reference snapshots.
It randomly samples hosts for common leaking services to
take heap snapshots. We currently define the fingerprints
to be the attribute tuple (cluster_id, OS version, service

version, date). This is based on our observations on the
locality of memory leaks. These snapshots are saved in a
reference database and cleaned up when they become stale.

At the diagnosis stage, after RESIN chooses the candidate
leaking hosts to profile (Section 5.2), RESIN checks if the
database already has reference snapshots with similar finger-
prints. If not, RESIN triggers reference collection. It first scans
the qualified hosts (not in the detection engine’s suspicious
list and have similar fingerprints to the leaking hosts) and
samples a few that have active memory activities and modest
memory usage. Then RESIN applies the growth pattern analy-
sis (Section 5.3) to check if this host is leaking. If not, it takes
snapshots and uploads the traces to the reference database.

5.5 Trace Analyses for Diagnosis
The next step is to analyze the collected snapshots to output
the root cause stack traces. The challenge is to handle many
noisy allocations and localize the buggy allocations.

RESIN designs a diagnosis algorithm listed in Algorithm 2.
The inputs are the allocations from the two most recent snap-
shots of a trace file (An−1, An), stack traces from reference
snapshots, and the estimated leaked size upper bound calcu-
lated in the pattern analysis. For the steady and stair patterns,
we estimate the leaked size upper bound by multiplying the
slope with the time interval of the growing segments and a
coefficient (by default 2). The goal is to find the stack traces
that allocate objects of sizes closest to the estimated leak.

The diagnosis engine first groups allocations in An−1, An
by the stack trace id and get two maps Sn and Sn−1. Each map
value is all the allocations that come from a stack trace. It
then traverses each stack trace in Sn to calculate the aggre-
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gated allocation size. The engine then identifies stack traces
that contain unique allocations, and ranks these traces based
by their allocated object sizes. Stack traces allocating sizes
larger than the estimated leak size are likely noises and thus
removed. Finally, the diagnosis engine cross-checks the refer-
ence snapshots to filter out benign stack traces. If the output
list is empty, the engine repeats the analysis for the next snap-
shot pairs (An−2, An−1), etc.

6 Mitigating Leaks

When a memory leak is detected, it can take time for develop-
ers to come up with and deploy the bug fix. To avoid further
customer impact, RESIN attempts to automatically mitigate
the detected leak issues. Depending on the nature of the mem-
ory leak, mitigation can be done in several ways. Rebooting
the host OS in general can mitigate all kinds of leaks. How-
ever, this is costly and potentially causes VM downtime.

RESIN leverages the results from its detection engine and
uses a rule-based decision tree to choose a mitigation action
that can minimize the impact. If the memory leak is localized
to a single process or Windows service, and this process or
service is not required to be always alive to provide services to
customers, RESIN attempts the lightest mitigation by simply
restarting the process or Windows service.

For some processes, the mitigation requires additional steps.
RESIN allows component teams to define custom scripts and
invoking conditions. If the leak is located in buggy drivers,
RESIN unloads and reloads the driver to mitigate the issue.

For safety, RESIN uses allowlists for each action category
to make sure auto-mitigation is not misused. It defines an
initial allowlist for the processes and drivers that are known
to be safe to restart. A feature team can opt in auto-mitigation
by adding the name of the process or tag to the allowlist.

For leaks in the OS kernel memory such as I/O request
objects and file objects, if the detection engine can attribute
the leak to a process or a service, RESIN attempts to restart
the culprit process or service. This action is usually effective
because it allows the leaked kernel objects to be properly
freed without the need to reboot the OS.

OS reboot will resolve any software memory leak but takes
a much longer time and can cause VM downtime. Thus, it is
the last resort when a leak cannot be mitigated by the above
actions or the name is not in the allowlist. RESIN checks if
the host is empty and does the OS reboot if so. Empty hosts
could also leak memory due to past user activities or current
background processes. For a non-empty host, RESIN first
performs live VM migrations [8]. Then it attempts a kernel
soft reboot, which skips hardware initialization. If the soft
reboot is ineffective, a full OS reboot is performed.

To minimize the impact of mitigation actions, RESIN
closely monitors the leaking hosts. It prioritizes the actions on
1) nodes that fire low-memory related events, such as E2004
(low virtual memory) from the Windows resource exhaus-
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Figure 8: Memory leak cases RESIN detected and reported.

tion detector, E3122 (not enough memory to start VM) from
Hyper-V; 2) nodes in regions with capacity issues; 3) nodes
with host memory reservation overage; 4) nodes ordered by
the leak size, leaking rate, and the predicted time-to-failure.

RESIN stops applying mitigation actions to a target when
the detection engine no longer considers the target leaking.
This typically occurs without manual intervention. For exam-
ple, after developers identify the root cause and apply a fix,
the leak symptom disappears, so RESIN stops the mitigation.
Sometimes, after a mitigation action, the leak symptom no
longer re-appears, which naturally stops further mitigation.

RESIN also coordinates with its diagnosis engine (Sec-
tion 5) in performing the mitigation actions. If the diagnosis
engine plans to or is taking heap snapshots for a candidate
host, RESIN defers the mitigation actions to avoid losing the
critical opportunities for capturing the leaking allocations.

7 Evaluation
Our evaluation answers several questions: (1) how effective
is RESIN in detecting memory leaks? (2) how accurate is
the detection? (3) can RESIN help developers diagnose and
mitigate leaks? (4) what is the overhead of trace collection?

7.1 Deployment Status and Scale
RESIN has been running in production in Azure since late
2018. It covers millions of hosts, over 600 different host pro-
cesses and over 800 different kernel pool tags daily. The de-
tection engine in RESIN analyzes more than 10 TB memory
usage data every day. The diagnosis module collects 56 trace
files on average (10–200MB) daily. Every month, the miti-
gation engine performs a median of 1,592 process restarts,
1,290 kernel soft reboots, and 4,649 node reboots.

7.2 Detecting Production Memory Leaks
Azure has various solutions that help eliminate memory leak
bugs before production, including code reviews, static bug
finding tools, testing, and safe deployment policies. As a re-
sult, only complex memory leak bugs occasionally escape
these solutions. RESIN serves as the last defense to effec-
tively catch these bugs in production.

Figure 8 shows the memory leak tickets RESIN reported
in Azure from July 2020 to August 2021. Overall, RESIN
reported 564 tickets in 14 months, among which developers
explicitly resolved 291 tickets.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation    117



09 10 11 12 01 02 03 04 05 06 07 08 09

Month (2020-2021)

0%

20%

40%

60%

80%

100%

U
n
e
x
p
. 
re

b
o
o
t

Figure 9: Unexpected VM reboot.
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Figure 10: VM allocation error rate.
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7.3 End-to-End Impact
The end-to-end benefits brought by RESIN are clearly demon-
strated by two key metrics: (1) VM unexpected reboot2: the
average number of reboots per one hundred thousand hosts
per day due to low memory; (2) VM allocation error: the ratio
of erroneous VM allocation requests due to low memory.

As shown in Figures 9 and 10 (data is normalized for con-
fidentiality), the improvement RESIN provides is significant.
Both metrics show large decreases: VM reboots are reduced
by 41× from September 2020 to September 2021, and allo-
cation error rates are reduced by 10× from October 2020 to
September 2021. Note that these key metrics have been con-
tinuously dropping before the starting points in Figures 9 and
10. We omit to plot these earlier points because the raw data
are no longer in the database due to data retention policies.

The improvement also shows in the reduction of service
incidents. In 2020 and 2021, no severe outages in Azure were
caused by memory leaks (such outages occurred previously).

7.4 Effectiveness of Detection
Detecting memory leaks in a complex, frequently changing
cloud infrastructure like Azure is challenging. RESIN aims to
minimize the false positives and false negatives.

Precision To evaluate the detection accuracy, we count how
many cases RESIN reported are flagged by developers as false
alarms. Overall, RESIN only incurs 7 false positives out of
291 resolved cases in 14 months.

There are two common patterns of false positives: (i) after
a component adds a new feature that consumes significantly
more memory; (ii) after a configuration change, e.g., “we are
collecting and correlating lot more counters and # of disks
per node have also increased”. The memory usages in these
cases typically stabilize and become new baselines, which
RESIN automatically picks up without requiring adjustment.

Recall We count how many cases RESIN misses or fails to de-
tect in time. The criterion is a memory leak causing noticeable
service impact and getting reported by users, developers, or
other monitoring services before RESIN detects it. We search
keywords including “memory leak” and “leak” on Azure’s
issue tracker used by all teams. We compare them with tickets
automatically created by RESIN. Overall the false negatives
are few: only 4 cases are not on RESIN’s ticket list.

We also inspect the reason for each case. One case in July
2020 was caught by us manually when analyzing a heap snap-

2In this paper, we only count those VM unexpected reboots and allocation
errors caused by low memory and memory exhaustion.

shot trace, before the issue triggered RESIN’s alert. In other
two cases, the leak impact was not significant, but developers
found the leaks when they were closely monitoring their new
deployment. The last case was both found by developers and
RESIN, but developers found the issue faster. This happened
because the issue manifested itself earlier on a testing cluster
that had a different workload from the production clusters
RESIN monitored; developers were also using an aggressive
threshold in that cluster to expose potential issues.

Timeliness It can be difficult to determine the exact starting
time of a leak and hence the exact detection delay. We observe
that RESIN’s detection typically occurs within two hours of
a leak’s clear manifestation. In general, a too-long detection
delay would be reflected in a false negative since developers
or other monitoring tools would detect the issue earlier.

Resolution rate Not all cases are eventually resolved by
developers. On average, RESIN reports a resolution rate of
52% within reported date range. We believe this resolution
rate is underestimated compared to actual responsive rate: in
many cases, developers took actions but did not update the
open tickets (only tickets tagged with a high severity level are
mandatory to resolve according to ticket platform’s policy).
“Unresolved” also does not necessarily mean the ticket is
unimportant. We observed that some teams tend to have lower
response rates, likely due to their limited resources and the
overwhelming number of urgent tickets.

This result is also influenced by our design goal. RESIN is
designed to catch memory leaks early before the leak escalates
to catastrophic issues. RESIN further provides automatic leak
mitigation. Thus, a could-have-been-severe leak would appear
to be low-risk. When developers prioritize resolving high-
impact tickets, it adversely affects the resolution rate for our
leak tickets. Due to the large volume of reported cases from
various groups, we could not afford to inspect all unresolved
tickets and check with their owners.

7.5 Effectiveness of Diagnosis
The diagnosis module of RESIN in total collects traces and
generates reports for 157 cases from July 2020 to August
2021 (Figure 8). For tickets related to kernel leaks or clusters
with legacy OSes, RESIN is unable to collect traces. Before
November 2020 the diagnosis module was in trial runs and
diagnosis reports were not appended to tickets. We gradually
enabled it for more clusters after the trial run was over.

Figure 11 shows how the ratio of tickets with collected
traces (and diagnosis reports) increases, which correlates with
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virtual void AddDsmsCertificate(CertificateStore& ... {

-   for (; certHead != nullptr; certHead = certHead->Next) {

+   for (auto currentCert = certHead; currentCert != nullptr;

+        currentCert = currentCert->Next) {

-      if (certHead->Versions == nullptr)

+      if (currentCert->Versions == nullptr)

          continue;

-      auto latest = certHead->Versions->Latest;

+      auto latest = currentCert->Versions->Latest;

       if (latest == nullptr)

          continue;

       ...

    freeCertLst(certHead)

Figure 12: The fix for ServiceH leak.
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Figure 13: Contract violation induced leak on ServiceD.

the improvements on the ratio of resolved tickets.
Usefulness To evaluate the usefulness of the diagnosis re-
ports RESIN generates, we randomly sample 14 issue tick-
ets and closely follow up with the developers (all cases are
eventually resolved and fixed). In 11 cases (79%), develop-
ers directly use the diagnosis reports to pinpoint root causes.
Among them, in 5 cases the bug fix is in the same function
in the allocation stack; in 5 cases the allocation stack and
bug fix are in the same source file; in only 1 case the alloca-
tion stack and bug fix are in different components. Out of the
other three cases, two are solved by memory dumps because
the developers are quite experienced: upon seeing the sizes
of leaked memory objects, they immediately realized which
function the leaks came from. In one case the traces captured
in the production cluster are not particularly useful. Instead,
developers successfully captured some snapshots consisting
of leaking stack on their own testing cluster.
Feedback Over time, developers build up high confidence in
RESIN. We receive many pieces of positive feedback:

“(The result is..) incredibly useful. The information I had
was enough.”

“Thanks for pinpointing out the memory leak that we had
been trying so hard to find over the past few days.”

“Stack trace was sufficient for debugging this, it included
the API call that was problematic.”

Case studies We share two representative cases. The first
case occurs in ServiceH3. This process’ memory usage keeps
increasing and gets restarted every few days. The diagnosis
module in RESIN collects heap snapshots and pinpoints the
root cause stack trace. After the diagnosis report is attached
to the ticket, developers confirm and fix the issue in 3 hours.

In this case, the program uses a pointer to manage the list
of certificates, and frees the pointer at the end of the function.
However it also uses the pointer to traverse the list. In the end

3The service names are anonymized for reasons of confidentiality.

Mitigation Count 50% 75% 90% 99%

Process restart 27,039 1.62 5.74 6.50 30.70
Kernel soft reboot 8,292 24.64 34.47 49.14 141.69
Node reboot 278,005 248.58 274.36 362.10 1382.61

Table 2: Single mitigation action execution time (seconds).

the pointer has moved and only a part of the list is freed (Fig-
ure 12). This is a day-0 bug introduced a long time ago, but is
recently triggered due to added certificates to the machines.

The second case represents another common (6 out of 14
cases we studied) type of leaks in cloud infrastructure: leaks
due to contract violations in cross-component interactions.
After RESIN reports a firewall-related svchost is leaking, the
diagnosis module collects traces and reports a function in the
rule list adding procedures after analyses.

Developers do not find bugs in this specific function at
first, but the report prompts them to check the firewall rule
lists on these machines. They then find the rule lists on these
machines have been flooded with redundant rules. The reason
is that the svchost process gets a firewall configuration from
another program ServiceD. This program creates firewall
rules at startup. Due to another bug, ServiceD keeps crashing,
which causes it to miss deleting created rules and repeatedly
recreate rules upon restarts (Figure 13). This in turn causes
significant memory usage increases for the svchost program.
Such a bug is hard to be detected statically.

Timeliness The diagnosis timeliness is also important to help
developers. We measure the latencies of RESIN’s heap snap-
shot collection and analysis. The median trace collection time
is 61 minutes. For more than 80% of cases, the collection
finishes within 10 hours. Note that the trace collection time is
influenced by when a leak recurs in a suspected process. If the
leak is sporadic, RESIN has to wait until the symptom reap-
pears to capture the snapshot. For trace analysis, the median
latency of the analysis jobs is 10 minutes.

7.6 Effectiveness of Mitigation
Mitigation procedure duration on leaked services Fig-
ure 14 shows the number of mitigated nodes of a kernel leak
due to a buggy driver. At first, RESIN applied mitigation ac-
tions on a few nodes per day to test possible side effects.
Once the mitigation actions reached production, RESIN ap-
plied mitigation to at most around 2,000 nodes per day with
some fluctuations. The mitigation action volume then gradu-
ally dropped as the fix was being rolled out. Eventually the
volume dropped to a few nodes a day, which were primarily
nodes that failed in driver upgrading or other fix actions.

Mitigation action duration on single host We collect the
frequencies and durations of each mitigation action between
July 2020 to September 2021. As Table 2 shows, process
restart is the most lightweight mitigation action. In most cases,
it finishes within 6.5 seconds. Kernel soft reboot is also fast
and in most cases finishes in a minute. Node reboot takes a
longer time, with a median time of 4.6 minutes.
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Figure 14: Mitigation for a leaking driver.
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Figure 16: False negative of detection algo.

7.7 Comparison of Different Algorithms

Bucketization-based detection We first compare our core
detection algorithm, the bucketization-based pivot analysis,
with the practice of static threshold-based memory usage mon-
itoring. We use four threshold policies, e.g., policy “500MB-
40” means generating leak alerts if a service’s memory usage
exceeds 500 MB on more than 40 nodes. We apply these hard
thresholds to historical data and count how many cases will
be wrongly reported as leaking (false positive) and how many
leaking cases will be missed (false negative).

Figures 15 and 16 show the results. Our algorithm performs
the best: it has both the lowest false positives and the lowest
false negatives. In comparison, for other policies, it is often a
dilemma to balance precision and recall. For example, policy
“1GB-80” has the lowest false positives among the baselines
at the cost of having the highest false negatives.

Pattern-based collection We compare our pattern-based col-
lection with random collection. The experiment is conducted
on ServiceS, ServiceV, and ServiceW. They have ongoing
memory leaks on some hosts. We randomly choose six hosts
and apply pattern-based collection on three hosts and random
collection on the other three hosts. For the random strategy,
we implement a workflow that periodically collects snapshots
with at least two snapshots and completes the trace collection
with a probability 1/6. We inspect the collected heap snapshot
traces to see if the leaking allocation exists in the snapshot.

Our pattern-based collection successfully captures leak-
ing allocation stacks for all three services. Interestingly, the
root cause of ServiceW was still unknown at the time we
conducted the experiment. RESIN successfully captures an
outstanding allocation that contains the bug within a real-time
event processing function. In comparison, random collection
only captures the buggy allocation for ServiceS, which has a
frequent leaking interval (less than 1 hour).

Reference-assisted analysis We then evaluate the useful-
ness of reference snapshots with a controlled experiment on
the ongoing leaking component ServiceS, which has the most
noises among the three ongoing leak cases. We randomly
sample eight hosts that have leaking patterns and collect snap-
shots until the leaking stack appears. We feed eight collected
trace files to RESIN and compare the analysis results with
and without reference snapshots. Figure 17 shows the result.
Without the reference snapshots, the root cause stack trace
ranks below the top three in all traces. With the reference
snapshots, in 7 out of 8 traces, the root cause rank improves.
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8X5XX
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Figure 17: Ranks of root cause stack trace in diagnosis analyses on
8 trace files, w/ (green colored) and w/o (red colored) using reference
snapshots. Cell with a number represents the rank. “X” marks the
stack trace that gets filtered with the reference snapshots.

HasOverlap Sessions Nodes 25% 50% 75% 90% 95% 99%

FALSE 102,627 315 28 49 94 164 202 869
TRUE 165 31 38 50 59 86 241 888

Table 3: VM deployment time (seconds) impact by trace collection.

In four traces, the rank rises to the top three, which largely
narrows down the code regions developers need to investigate.

7.8 Runtime Overhead
As a production service, RESIN should not impose significant
overhead on the hosts. For the detection component, since
RESIN leverages the kernel to collect performance counters
infrequently and offloads the analyses remotely, the overhead
is minimal. The main source of overhead is the heap snapshot
trace collection. We use the VM deployment performance to
quantify the end-to-end cost of trace collection, because VM
deployment is the most important event for hosts and involves
nearly all host services and triggers many critical code paths.
A large overhead will be reflected in long deployment time.

We first check how many hosts RESIN performs trace col-
lection on in November 2021. The result shows only 346
hosts are collected at least once, which is less than 0.1% of all
nodes in a cluster. We then collect start and end timestamps
of all VM deployment sessions and the heap snapshot tracing
requests. We compare the timestamps in the two sets of events.
In 315 (91%) of the 346 hosts, the deployment sessions do
not have any overlap with tracing sessions, thus the tracing
has no impact on these sessions.

Table 3 shows the end-to-end latency of the overlapped
sessions compared to non-overlapped sessions: by 1 s for the
median, and by 10 s for the 25th percentile. The latency in-
crease could be notable for some short-duration deployments.
However, this impact is limited to only a few sessions (0.16%)
from a relatively small number of host nodes.
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Figure 18: Memory size and CPU usage changes through tracing.

To measure the impact on memory size and CPU, we con-
duct experiments on two hosts that have active workloads.
We trace one of the critical host processes. Figure 18 shows
the memory and CPU usage during the experiment. Enabling
tracing both slightly increases the average memory usage,
0.25 MB for host A and 0.53 MB for host B, and the CPU
usage, 0.23% for host A and 0.22% for host B. When do-
ing snapshot and dumping the trace, there is a clear spike
for CPU usage: around 46% in both hosts. The memory us-
age also increases, but not significantly: 1.93 MB for host A
and 3.89 MB for host B. After the tracing, the memory usage
remains at a slightly increased level due to a one-time ini-
tialization required by tracer. Overall, the CPU and memory
usage costs are acceptable in production deployment.

7.9 Tuning Effort
The software components and workloads in Azure infras-
tructure undergo frequent changes. As part of RESIN’s de-
sign goals of minimizing false positives and false nega-
tives, we aim to build robust algorithms that avoid fragile
parameter tuning. For the detection part, throughout RESIN’s
production operation, we only made one major parameter
change. We updated the alert threshold for the final result
<BucketSize,SeverityScore> (Section 4.3.1) from <50 MB,
10> to <200 MB, 40> around 3 months after deploying RESIN.
There has not been further tuning since then. For the diagnosis
part, except for the initial trial runs in which we were experi-
menting with the snapshot algorithms, the parameters for the
completion triggers have not been tuned after the diagnosis
engine was enabled in production.

8 Lessons and Limitations
Lessons While memory leaks are generally taken seriously,
developers tend to postpone the investigation if there are no
convincing hints. Presenting clear evidence in results is criti-
cal, and significantly improves developers’ responsiveness.

Many teams write extensive test cases that check if al-
locations are freed. Some teams also implement their own

version of memory leak detection tool in their testing cluster.
Developers mentioned a major pain point is that the testing
environment has significant discrepancies with the production
environment. For example, in one case, developers mentioned

“We don’t have an environment where ServiceH runs for a re-
ally long time with hosts undergoing reboots.”, otherwise,
their testing would have caught the memory usage anomaly.

Our initial thought in designing the diagnosis module is to
analyze the source code of the detected leaking component.
We later found that finding the root cause stack traces is usu-
ally good enough for developers to debug the issue based on
their own experience and domain knowledge.

For production services, safety is of high priority. The
cloud infrastructure is a complex and dynamic environment.
Some workflow in RESIN can be interrupted abruptly, e.g.,
due to transient network issues, interference with other profil-
ing tools. On one occasion, RESIN accidentally left the trace
collection running and triggered alarms in the detection en-
gine. We set three lines of protection to prevent similar issues:
(i) limit collecting on same cluster within one hour five times
at maximum to reduce side effects; (ii) a forced cleanup oper-
ation whether the profiling succeeds or not; (iii) a workflow
that periodically checks logs and cleans up for runaway hosts.

Limitations The telemetry data RESIN analyzes is relatively
coarse-grained. Even the heap snapshot only contains limited
information about allocations. Therefore, it has inherent inac-
curacies and may miss detection of minor leak bugs. RESIN
can be further enhanced by collecting more fine-grained sig-
nals, and leveraging semantic information from source code.

Developers may need to reproduce a reported memory leak
issue for investigation or confirming bug fixes. But this is of-
ten challenging, because the issues are often triggered by com-
plex workloads and rare conditions. RESIN does not address
this challenge. We plan to automatically capture production
triggering workloads for developers to reproduce leaks.

The patterns used in our heap snapshot trigger are based on
empirical observations, which may be incomplete. Our classi-
fication method is simple. They can be improved with more
comprehensive case studies and more advanced methods.

9 Related Work
Detecting memory leak bugs has been extensively studied in
the context of conventional software. Our work focuses on
addressing memory leaks in production cloud infrastructure,
which face unique challenges as described earlier. Indeed, the
memory leaks addressesed by RESIN are usually the ones
that escape the bug detection and extensive testing practice
in Azure and are only triggered in complex production work-
loads. The main research contribution of RESIN is its novel
multi-stage approach and algorithms including the bucket
pivot analysis and moving suspicious interval algorithm for
leak detection, the live heap snapshot collection and analysis
for leak diagnosis, and the decision tree based leak mitigation.
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Dynamic leak detection. Many solutions have been pro-
posed to dynamically detect memory leaks. There are broadly
two approaches. In one approach, the tool records memory-
related metadata by inserting checks to object code [16], using
performance monitoring units in processors [24], instrument-
ing bytecode [39, 49], instrumenting intermediate represen-
tation [25, 34], instrumenting source code [21], modifying
garbage collector or memory allocators [23, 35] or using met-
rics such as object staleness [17] as indicators to examine ob-
ject lifetime. These works usually record fine-grained memory
object information and have high accuracy, but they require
rewriting codes or special hardware support, which is difficult
and unsafe to apply in production settings.

Another approach analyzes heap snapshots/dumps [31, 33,
38, 44]. They are designed for interactive offline debugging
and do not work well for long-running processes and services
in production systems. They also rely on user-defined work-
loads as oracles to judge if memory growth is a leak. Obtain-
ing such oracle workloads is difficult in practice. RESIN con-
tinuously monitors components in production cloud, designs
robust algorithms to detect leaks without requiring oracles,
and performs low-overhead live trace collection on-demand.

Some solutions [22,40,41] analyze memory usage patterns.
They propose complex models to detect leaks in a single
process or VM. The memory usage behavior of an individ-
ual process can be highly noisy due to workload effect and
interference. Thus, they can have false positives and false neg-
atives when applied in production cloud. Building complex
models for each process in cloud scale also faces significant
computation challenges. In comparison, RESIN focuses on
the memory usage summary and global trend across processes,
which enables accurate detection and efficient computation.
RESIN additionally takes live heap snapshot and analyzes the
snapshots to help developers localize the root cause.

Static leak detection. A wealth of work uses static analy-
sis to find memory leak bugs. Many of them focus on im-
proving the accuracies of static analyses [10, 15, 18, 36, 47].
Some other work focuses on finding specific leak code pat-
terns. LeakChecker [50] finds objects created by the itera-
tion are unnecessarily referenced by objects external to the
loop. MLEE [46] finds leaks from early-exit paths by cross-
checking the presence of memory deallocations on different
early-exit paths and normal paths. Heapster [5] adopts a hy-
brid approach to leverage dynamic information to help static
analysis. In general, while static approaches have the advan-
tages of not requiring running a program, they face well-
known scalability and accuracy challenges. They are also
typically designed for a specific type of program. The soft-
ware components in cloud infrastructure are highly complex
and are written in a wide variety of programming paradigms.
Also, static analyses cannot handle the forgotten leaks.

Leak fix and recovery. Some research work focuses on help-
ing developers fix leak in addition to detecting them. Leak-

Point [9] points developers to the potential fixable locations
by taint analysis. LeakChaser [48] provides three layers of
abstractions to assist programmers to diagnose memory leaks.
Some other work focuses on automatically recovering the
program from leaking. LeakSurvivor [42] and Melt [7] re-
claim memory resources by swapping out objects to disks.
LeakFix [11] inserts deallocations for leaks.

Statistical debugging. Statistical debugging [28, 29] uses
statistical methods to identify predictors in the source code
that correlate with a program failure. It requires instrumenting
all predicates and re-running a program many times with
normal runs and buggy runs. The diagnosis design in RESIN
is complementary to statistical debugging. It collects live heap
snapshots from production directly. Its algorithm identifies
buggy stack trace based on the allocation information.

Failure detection and mitigation. Detecting memory leaks
in production cloud is related to the topic of failure detection
and mitigation in distributed systems [14,19,20,27,30,43,51].
Memory leaks are difficult to detect compared to other types
of failures. IASO [37] detects fail-slow issues and supports
mitigating slow issues with VM or node reboots. Narya [26]
predicts node-level failures and performs mitigation actions.
RESIN focuses on catching on-going memory leak issues,
and provides a holistic solution. Its mitigation module lever-
ages results from the detection engine to perform targeted
mitigation to a specific process, service, driver, or host OS.

10 Conclusion

This paper presents RESIN, an end-to-end service designed
to tackle memory leaks in production cloud infrastructure.
RESIN takes a divide-and-conquer approach to decompose
the memory leak problem, and designs a multi-level solution
with novel algorithms including bucketization-based pivot
analysis, live heap snapshot strategy, and diagnosis analysis.
RESIN has been running in Azure for more than 3 years, and
successfully reduces low-memory-induced VM reboots and
new VM allocation errors by 41× and 10×, respectively.
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