
RESIN: A Holistic Service for
Dealing with Memory Leaks in

Production Cloud Infrastructure
Chang Lou, Cong Chen, Peng Huang, Yingnong Dang, Si Qin,

Xinsheng Yang, Xukun Li, Qingwei Lin, Murali Chintalapati

OSDI 2022

Memory leak is a notorious issue in cloud

2

OS kernel

…

…
service processes

device drivers

host software components

Memory leak is a notorious issue in cloud

2

code

changes

OS kernel

…

…
service processes

device drivers

host software components

Memory leak is a notorious issue in cloud

2

code

changes

OS kernel

…

…
service processes

device drivers

host software components

Memory leak is a notorious issue in cloud

2

code

changes

OS kernel

…

…
service processes

device drivers

host software components

performance

degradation

host reboot

VM allocations

denied

Memory leak is a notorious issue in cloud

2

code

changes

OS kernel

…

…
service processes

device drivers

host software components

performance

degradation

host reboot

VM allocations

denied

A production memory leak in cloud

3

Firewall service

ID PERM PROT SRC DEST
1 ✓ TCP ANY 192.168.1.21
2 ✓ TCP ANY 192.168.1.22
3 ✓ UDP ANY 192.168.1.23
4 ✘ ANY ANY 192.168.1.27

…

Host machines in Azure clusters

…

A production memory leak in cloud

Firewall service Host machines in Azure clusters

ID PERM PROT SRC DEST
1 ✓ TCP ANY 192.168.1.21
2 ✓ TCP ANY 192.168.1.22
3 ✓ UDP ANY 192.168.1.23
4 ✘ ANY ANY 192.168.1.27
5 ✘ ANY ANY 192.168.1.44
6 ✘ ANY ANY 192.168.1.44
7 ✘ ANY ANY 192.168.1.44
8 ✘ ANY ANY 192.168.1.44
9 ✘ ANY ANY 192.168.1.44

10 ✘ ANY ANY 192.168.1.44
11 ✘ ANY ANY 192.168.1.44
12 ✘ ANY ANY 192.168.1.44

.. ✘ ANY ANY 192.168.1.44

… rule object leaked!

…

…

4

A production memory leak in cloud

Firewall service Host machines in Azure clusters

ID PERM PROT SRC DEST
1 ✓ TCP ANY 192.168.1.21
2 ✓ TCP ANY 192.168.1.22
3 ✓ UDP ANY 192.168.1.23
4 ✘ ANY ANY 192.168.1.27
5 ✘ ANY ANY 192.168.1.44
6 ✘ ANY ANY 192.168.1.44
7 ✘ ANY ANY 192.168.1.44
8 ✘ ANY ANY 192.168.1.44
9 ✘ ANY ANY 192.168.1.44

10 ✘ ANY ANY 192.168.1.44
11 ✘ ANY ANY 192.168.1.44
12 ✘ ANY ANY 192.168.1.44

.. ✘ ANY ANY 192.168.1.44

… rule object leaked!

…

…

4

testing and static checker

report no bug ✓

A production memory leak in cloud

Firewall service Host machines in Azure clusters

ID PERM PROT SRC DEST
1 ✓ TCP ANY 192.168.1.21
2 ✓ TCP ANY 192.168.1.22
3 ✓ UDP ANY 192.168.1.23
4 ✘ ANY ANY 192.168.1.27
5 ✘ ANY ANY 192.168.1.44
6 ✘ ANY ANY 192.168.1.44
7 ✘ ANY ANY 192.168.1.44
8 ✘ ANY ANY 192.168.1.44
9 ✘ ANY ANY 192.168.1.44

10 ✘ ANY ANY 192.168.1.44
11 ✘ ANY ANY 192.168.1.44
12 ✘ ANY ANY 192.168.1.44

.. ✘ ANY ANY 192.168.1.44

… rule object leaked!

…

…

4

testing and static checker

report no bug ✓ only leak on some hosts

A production memory leak in cloud

Firewall service Host machines in Azure clusters

ID PERM PROT SRC DEST
1 ✓ TCP ANY 192.168.1.21
2 ✓ TCP ANY 192.168.1.22
3 ✓ UDP ANY 192.168.1.23
4 ✘ ANY ANY 192.168.1.27
5 ✘ ANY ANY 192.168.1.44
6 ✘ ANY ANY 192.168.1.44
7 ✘ ANY ANY 192.168.1.44
8 ✘ ANY ANY 192.168.1.44
9 ✘ ANY ANY 192.168.1.44

10 ✘ ANY ANY 192.168.1.44
11 ✘ ANY ANY 192.168.1.44
12 ✘ ANY ANY 192.168.1.44

.. ✘ ANY ANY 192.168.1.44

… rule object leaked!

…

…

4

testing and static checker

report no bug ✓ only leak on some hosts

The leak is cross-component

Firewall service

ID PERM PROT SRC DEST
1 ✓ TCP ANY 192.168.1.21
2 ✓ TCP ANY 192.168.1.22
3 ✓ UDP ANY 192.168.1.23
4 ✘ ANY ANY 192.168.1.27

Config agent

load configured

rules

5

The leak is cross-component

ID PERM PROT SRC DEST
1 ✓ TCP ANY 192.168.1.21
2 ✓ TCP ANY 192.168.1.22
3 ✓ UDP ANY 192.168.1.23
4 ✘ ANY ANY 192.168.1.27

5 ✘ ANY ANY 192.168.1.44 +

register

rules

Firewall service Config agent
6

load configured

rules

The leak is cross-component

ID PERM PROT SRC DEST
1 ✓ TCP ANY 192.168.1.21
2 ✓ TCP ANY 192.168.1.22
3 ✓ UDP ANY 192.168.1.23
4 ✘ ANY ANY 192.168.1.27

5 ✘ ANY ANY 192.168.1.44

remove rules
(normal exit)

-

Firewall service Config agent

register

rules

7

load configured

rules

The leak is cross-component

ID PERM PROT SRC DEST
1 ✓ TCP ANY 192.168.1.21
2 ✓ TCP ANY 192.168.1.22
3 ✓ UDP ANY 192.168.1.23
4 ✘ ANY ANY 192.168.1.27

5 ✘ ANY ANY 192.168.1.44

register

rules crash!

Firewall service Config agent
8

load configured

rules

The leak is cross-component

ID PERM PROT SRC DEST
1 ✓ TCP ANY 192.168.1.21
2 ✓ TCP ANY 192.168.1.22
3 ✓ UDP ANY 192.168.1.23
4 ✘ ANY ANY 192.168.1.27
5 ✘ ANY ANY 192.168.1.44
6 ✘ ANY ANY 192.168.1.44
7 ✘ ANY ANY 192.168.1.44
8 ✘ ANY ANY 192.168.1.44
9 ✘ ANY ANY 192.168.1.44

10 ✘ ANY ANY 192.168.1.44
11 ✘ ANY ANY 192.168.1.44
12 ✘ ANY ANY 192.168.1.44

register

rules

recovery

.. ✘ ANY ANY 192.168.1.44

… 7,092,866 more rows

Firewall service Config agent

crash!
~80 bytes

9

load configured

rules

The leak is configuration-triggered

ID PERM PROT SRC DEST
1 ✓ TCP ANY 192.168.1.21
2 ✓ TCP ANY 192.168.1.22
3 ✓ UDP ANY 192.168.1.23
4 ✘ ANY ANY 192.168.1.27
5 ✘ ANY ANY 192.168.1.44
6 ✘ ANY ANY 192.168.1.44
7 ✘ ANY ANY 192.168.1.44
8 ✘ ANY ANY 192.168.1.44
9 ✘ ANY ANY 192.168.1.44

10 ✘ ANY ANY 192.168.1.44
11 ✘ ANY ANY 192.168.1.44
12 ✘ ANY ANY 192.168.1.44

register

rules

recovery

.. ✘ ANY ANY 192.168.1.44

… 7,092,866 more rows

Firewall service Config agent

crash!
~80 bytes

10

load configured

rules

(bug triggered with
enabled feature in

config only)

Why detection is still a problem in cloud?

11

Why detection is still a problem in cloud?

11

‣ Practice 1: static approach

• run static analysis on source codes

• expose bugs without running programs

…

Firewall service

Why detection is still a problem in cloud?

11

‣ Practice 1: static approach

• run static analysis on source codes

• expose bugs without running programs

Config agent

…

Firewall service

‣ Limitations

• no overhead, but not scalable or accurate

Why detection is still a problem in cloud?

12

‣ Practice 2: dynamic approach

• instrument programs and track the object

lifetime at runtime to find leaked objects

• detect leaks and pinpoint leaked objects

Why detection is still a problem in cloud?

12

‣ Practice 2: dynamic approach

• instrument programs and track the object

lifetime at runtime to find leaked objects

• detect leaks and pinpoint leaked objects

……

+ overhead

Why detection is still a problem in cloud?

12

‣ Practice 2: dynamic approach

• instrument programs and track the object

lifetime at runtime to find leaked objects

• detect leaks and pinpoint leaked objects

……

+ overhead

Why detection is still a problem in cloud?

13

+ overhead

……

‣ Practice 2: dynamic approach

• instrument programs and track the object

lifetime at runtime to find leaked objects

• detect leaks and pinpoint leaked objects

Why detection is still a problem in cloud?

13

+ overhead

……

‣ Practice 2: dynamic approach

• instrument programs and track the object

lifetime at runtime to find leaked objects

• detect leaks and pinpoint leaked objects

Why detection is still a problem in cloud?

13

‣ Limitations

• hard tradeoff among accuracy,

scalability and overhead

+ overhead

……

‣ Practice 2: dynamic approach

• instrument programs and track the object

lifetime at runtime to find leaked objects

• detect leaks and pinpoint leaked objects

Detecting memory leaks with RESIN

14

……

‣ Our response is RESIN

• achieve accuracy, scalability and low

overhead all together

Detecting memory leaks with RESIN

14

……

‣ Our response is RESIN

• achieve accuracy, scalability and low

overhead all together

‣ Insight 1

• break mixed detecting and pinpointing

Detecting memory leaks with RESIN

14

……

‣ Our response is RESIN

• achieve accuracy, scalability and low

overhead all together

‣ Insight 1

• break mixed detecting and pinpointing
• decompose detection to multi-stages

Detecting memory leaks with RESIN

14

……

‣ Our response is RESIN

• achieve accuracy, scalability and low

overhead all together

‣ Insight 1

• break mixed detecting and pinpointing

lightweight
detection

• decompose detection to multi-stages

Detecting memory leaks with RESIN

14

……

‣ Our response is RESIN

• achieve accuracy, scalability and low

overhead all together

‣ Insight 1

• break mixed detecting and pinpointing

lightweight
detection

Zoom-in +in-depth
inspections

• decompose detection to multi-stages

Detecting memory leaks with RESIN

15

……

‣ Our response is RESIN

• achieve accuracy, scalability and low

overhead all together

Detecting memory leaks with RESIN

15

……

‣ Insight 2

• a centralized approach for all components

• leverage power of scale to improve accuracy

RESIN

‣ Our response is RESIN

• achieve accuracy, scalability and low

overhead all together

RESIN overview

16

 Bucket-based pivot
analysis

Individual proc.
analysis Reference builder

Pattern-based
snapshot collector

Snapshot analysis

detection diagnosis mitigation

...

leaking alert

Impact-minimized

decision maker

diagnosis report

Outline

17

1. Motivation

2. Two-stage leak detection

3. Trace collection and diagnosis of detected leaks

4. In-production evaluation

Outline

18

1. Motivation

2. Two-stage leak detection

1. which component is leaking cluster-wide?

2. on which hosts that component is leaking?

3. Trace collection and diagnosis of detected leaks

4. In-production evaluation

Detect leaking component

‣ A straightforward solution:

• run anomaly detection on time-series data of memory usage for each host

‣ What are the challenges?

19

Challenges on detecting memory leaks in cloud

‣ Challenge 1: noisy signals from environment

• many different workloads in the cloud with dynamic characteristics

• false positives easily incur

20

m
em

or
y

us
ag

e

time

Challenges on detecting memory leaks in cloud

‣ Challenge 1: noisy signals from environment

• many different workloads in the cloud with dynamic characteristics

• detection false positives easily incur

‣ Challenge 2: slow leaks in long-running services

• memory leaks often last over days or weeks

• need to capture gradual changes meanwhile alerting in time

‣ Challenge 3: large profiling data volumes

• need to analyze >10 TB memory usage data daily

21

Solution: bucket-based pivot analysis

Time
stamp ImageName Cluster NodeId PID Private

Usage …

t1 firewall.exe NorthUS-1da 9das-sax1 254 2,334,720

t1 firewall.exe NorthUS-9lp 9das-yq0c 979 90,413,120

t1 firewall.exe Asia-b2 o1oz-bg75 1375 170,341,311

t1 … …

50 MB 100 MB 200 MB 2 GB

…t1

buckets of firewall.exe

‣ Each bucket is a collection of hosts with memory usage in a same range

• this bucketization is done per component

• e.g., 50MB-bucket includes hosts running firewall services with usage 50MB-100MB

‣ Insight: monitor trend of bucket size instead of individual component usage

• robust to tolerate noises due to workload effect (challenge 1)

• scalable to large clusters with massive hosts (challenge 3)

22

‣ Summaries from recent time-series data

• able to detect slow leaks for weeks (challenge 2)

Solution: bucket-based pivot analysis

50 MB 100 MB 200 MB 2 GB

…t1

t2

t3

… … … …

… … … …

…

…

15 days

(default)

23

‣ Run anomaly detection against time series of bucket size

• build normal distribution model from baseline range (2/3 portion)

Solution: bucket-based pivot analysis

50 MB 100 MB 200 MB 2 GB

…

… … … …

… … … …

…

…

baseline

test μ μ+3σ
per-bucket normal

distribution

model

24

t1

t2

t3

‣ Run anomaly detection against time series of bucket size

• use the remaining data points as the test (1/3 portion)

Solution: bucket-based pivot analysis

…

… … … …

… … … …

…

…

50 MB 100 MB 200 MB 2 GB

baseline

test μ μ+3σ
per-bucket normal

distribution

model

25

t1

t2

t3

‣ Run anomaly detection against time series of bucket size

• data points that exceed the μ + 3σ 1 of the baseline data are anomaly

Solution: bucket-based pivot analysis

…

… … … …

… … … …

…

…

alerting bucket!

[1] mean and standard deviation of the distribution

50 MB 100 MB 200 MB 2 GB

baseline

test μ μ+3σ
per-bucket normal

distribution

model

26

t1

t2

t3

outlier means the
component is leaking!

Localizing leaking process

27

t

Uc(ni, t)

T1

T0

t1 …

∆Uc(ni, tj)

∆T

t2 t3 t4 … tj tn

‣ Now we know which component is leaking

‣ Next question is, how to find on which host the component is leaking?

‣ Solution: suspicious window analysis

• input: memory usage time-series data on each host

• output: a list of suspected hosts with

• leaking time windows

• severity scores

‣ See algorithm details in our paper

Outline

28

1. Motivation

2. Two-stage leak detection

3. Trace collection and diagnosis of detected leaks

1. what profiling traces are useful for diagnosis?

2. what is the key challenge to collect traces?

3. how to analyze the collected traces?

4. In-production evaluation

Profiling trace: heap snapshots

‣ RESIN diagnoses leaks by capturing heap snapshot traces

• wait for leak allocation happens again to trigger completion

• differentiate snapshots before and after memory leak allocation

29

tracing start

Alloc
Addr

Stack
Id

Size RefCount

0x80000 1 64 2

Alloc
Addr

Stack
Id Size RefCount

0x80000 1 64 2
0x90000 1 128 1

Alloc
Addr

Stack
Id

Size RefCount

0x80000 1 64 2

0x90000 1 128 1

0xf0000 2 32 2

leak

Challenge: decide trace collection timing

‣ Snapshot differencing requires accurate triggers for leak

‣ Strawman solution: setting threshold on memory usage difference

• likely complete the tracing prematurely due to a memory usage spike

• result in failure to capture the buggy allocation

30

tracing start ? ??

Solution: collection based on growth pattern

‣ RESIN collect traces with pattern-based strategy

• leaks usually exhibits consistent patterns across time

• we classify the pattern of leak from historical data using simple linear regression

• RESIN trigger completion based on collection strategy pre-defined for each pattern

31

a b

c

d

Analyzing trace for diagnosis

32

Alloc
Addr

Stack
Id Size RefCount

0x80000 1 64 2
0x90000 1 128 1
0xb0000 2 128 1

Alloc
Addr

Stack
Id Size RefCount

0x80000 1 64 2
0xb0000 2 384 1
0xf0000 3 224 2
0xf0100 4 2560 2

snapshot1snapshot2 outstanding allocations

Alloc
Addr

Stack
Id Size RefCount

0xb0000 2 256 1
0xf0000 3 224 2
0xf0100 4 2560 2

-

1. Differentiate allocations between snapshots before and after leak

• returns a list of allocations containing leaky allocation

=

Analyzing trace for diagnosis

33

outstanding allocations

(sorted)

2. Sort the allocation list by size

• prioritize allocations whose memory usage is closer to estimated size

• challenge: the list still contains some noisy allocations, how to filter them?

Alloc
Addr

Stack
Id Size RefCount

0xf0100 4 2560 2
0xb0000 2 256 1
0xf0000 3 224 2

outstanding allocations

Alloc
Addr

Stack
Id Size RefCount

0xb0000 2 256 1
0xf0000 3 224 2
0xf0100 4 2560 2

Solution: references from non-leaking hosts

34

…

‣ Collect reference snapshots to filter noises

• fingerprint leaking processes and find its non-leaking hosts as references

• (cluster_id, OS version, service version, date)

• collect heap snapshots to retrieve stack traces from normal workloads

non-leaking hosts

(low severity score)

leaking hosts

(high severity score)

Alloc
Addr

Stack
Id Size RefCount

0xf0100 4 2560 2
0xb0000 2 256 1
0xf0000 3 224 2

Analyzing trace for diagnosis

35

outstanding allocations

(sorted)

3. Filter likely noisy allocations

• remove allocations larger than estimated size or from reference snapshots

• output diagnosed stack trace as result

Alloc
Addr

Stack
Id Size RefCount

0xf0100 4 2560 2
0xb0000 2 256 1
0xf0000 3 224 2

Analyzing trace for diagnosis

35

outstanding allocations

(sorted)

3. Filter likely noisy allocations

• remove allocations larger than estimated size or from reference snapshots

• output diagnosed stack trace as result

top in reference

snapshot

allocation lists

Alloc
Addr

Stack
Id Size RefCount

0xf0100 4 2560 2
0xb0000 2 256 1
0xf0000 3 224 2

Analyzing trace for diagnosis

35

outstanding allocations

(sorted)

3. Filter likely noisy allocations

• remove allocations larger than estimated size or from reference snapshots

• output diagnosed stack trace as result

stack trace
- ConfManager::ApplyUnlocked

 - Conf::Apply

 - FirewallRuleInfo::Create

 - Firewall::AddRule

top in reference

snapshot

allocation lists

Outline

36

1. Motivation

2. Two-stage leak detection

3. Trace collection and diagnosis of detected leaks

4. In-production evaluation

RESIN deployment status and scale

‣ Running in Azure production since late 2018

• cover millions of hosts

• detect leaks for 600+ host processes

• detect leaks for 800+ kernel pool tags

• the detection engine analyzes more than 10 TB memory usage data daily

• the diagnosis module collects 56 traces on average daily

37

In-production evaluation

‣ Our evaluation aims to answer questions:

• (1) how effective is RESIN in addressing memory leaks in Azure?

• (2) how accurate is the detection?

• (3) can RESIN help developers diagnose leaks?

• (4) what is the overhead of trace collection?

• ...

38

Evaluation setting

‣ We collected data from July 2020 to August 2021

• the detection engine reports 564 tickets in total

• developers explicitly resolved 291 (52%) tickets

39

07 08 09 10 11 12 01 02 03 04 05 06 07 08
Month (2020-2021)

0

20

40

60

Ca
se

 N
um

be
rs

w/ traces
Confirmed
Unresolved
Denied

How effective is RESIN?

40

09 10 11 12 01 02 03 04 05 06 07 08 09
Month (2020-2021)

0%
20%
40%
60%
80%

100%

Un
ex

p.
 re

bo
ot

10 11 12 01 02 03 04 05 06 07 08 09
Month (2020-2021)

0%
20%
40%
60%
80%

100%

VM
 a

llo
c.

 e
rro

r r
at

e

‣ VM reboots reduced by 41x

• average number of reboots per 100,000 hosts per day due to low memory

‣ VM allocation errors reduced by 10x

• ratio of erroneous VM allocation requests due to low memory

* data is normalized

How accurate is the detection?

41

‣ 7 false positives out of 291 resolved cases

• caused by new software features or configuration changes

‣ 4 false negatives not covered in RESIN’s reports among 14 months

• the leak bugs were captured by developers before causing noticeable impact

Can RESIN help developers diagnose leaks?

‣ RESIN collects traces and generates reports for 157 cases

• we followed debugging 14 issues to validate diagnosis usefulness

• directly pinpoint for 11 out of 14 cases

• save developers days to weeks on diagnosis workloads

42

Pinpointed Missed

different

files

different

cluster

dev use

memory

dump

same stack trace same source file

5 5 2

311

Diagnosis for the earlier firewall example

43

…

Diagnosis for the earlier firewall example

43

…

detection alerts

on firewall service

1

Diagnosis for the earlier firewall example

43

…

collect trace
on firewall

service
2

detection alerts

on firewall service

1

Diagnosis for the earlier firewall example

43

…

collect trace
on firewall

service
2

- ConfManager::ApplyUnlocked

 - Conf::Apply

 - FirewallRuleInfo::Create

 - Firewall::AddRule

diagnosis report3

detection alerts

on firewall service

1

Diagnosis for the earlier firewall example

43

…

collect trace
on firewall

service
2

- ConfManager::ApplyUnlocked

 - Conf::Apply

 - FirewallRuleInfo::Create

 - Firewall::AddRule

diagnosis report3

• bug not found in AddRule function

• but triggers developers to check rules

4

detection alerts

on firewall service

1

Diagnosis for the earlier firewall example

43

…

collect trace
on firewall

service
2

- ConfManager::ApplyUnlocked

 - Conf::Apply

 - FirewallRuleInfo::Create

 - Firewall::AddRule

diagnosis report3

• bug not found in AddRule function

• but triggers developers to check rules

4

ID PERM PRO
T

SRC DEST OWNER
1 ✓ TCP ANY 192.168.1.21 CA
2 ✓ TCP ANY 192.168.1.22 CA

found not released rules
from config agent crashes

5

detection alerts

on firewall service

1

Diagnosis for the earlier firewall example

43

…

collect trace
on firewall

service
2

- ConfManager::ApplyUnlocked

 - Conf::Apply

 - FirewallRuleInfo::Create

 - Firewall::AddRule

diagnosis report3

• bug not found in AddRule function

• but triggers developers to check rules

4

ID PERM PRO
T

SRC DEST OWNER
1 ✓ TCP ANY 192.168.1.21 CA
2 ✓ TCP ANY 192.168.1.22 CA

found not released rules
from config agent crashes

5

root cause pinpointed in
config agent and fixed

6detection alerts

on firewall service

1

What is the overhead of trace collection?

0
20
40
60

M
em

 (M
B)

0 50 100 150 200 250
Execution time (minutes)

0
20
40
60
80

CP
U

(%
)

tracing starts
(84 min)

tracing ends
(145 min)

Memory: + 1.93 MB

CPU: a spike lasting for seconds

End-to-end latency: +1 second (median)

<0.1%

9%

Affected hosts: < 0.1% of all nodes

all host nodes in Azure

all sessions in affected hosts

44

Affected sessions: < 9% on affected hosts

Conclusion
‣ Addressing memory leaks in cloud infrastructure is challenging

‣ RESIN, an end-to-end memory leak solution in production

• divide-and-conquer to decompose the problem

• multi-level solution with novel algorithms

‣ Running in Azure for more than 3 years

• low-memory-induced VM reboots reduced 41×

• new VM allocation errors reduced 10×

45

Backup slides

46

Decision tree based mitigation

identical

Process restart

live VM migrate

Yes

Nocustomized?

Perform customized

 mitigations

(e.g. unload driver)

in allow-list?

Process restart

empty host?No

Yes

Host reboot

Yes

No

Kernel soft reboot

not working?

Host reboot

‣ Goal: mitigate the memory leaks while minimizing the user impact

47

Mitigation duration

48

0 50 100 150
Duration (days)

0

500

1000

1500

Da
ily

 M
iti

ga
te

d
Ho

st
s

④ retry on few remaining hosts (130-145 day)① testing on small scale (0-7 day)

② mitigate on large scale (7-30 day)
 ③ mitigation continues while

the fix rolling out (30-130 day)
daily mitigated hosts

time(days)

